Chemical Exposure, Public Health, and Environmental Justice Among Populations Residing Near Industrial Areas: A Literature Review

Fatin Nisrina Athirah^{1*}, Aulia Fahira¹

¹Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jawa Timur

Corresponding Author

Fatin Nisrina Athirah Universitas Pembangunan Nasional Veteran Jawa Timur Rungkut, Surabaya, Jawa Timur 60293 E-mail: <u>fatinafiftanggul@gmail.com</u>

ABSTRACT

Background: Industrial chemical exposure has emerged as a critical environmental and public health concern, particularly in Indonesia. Communities residing near industrial zones face heightened risks due to direct and prolonged exposure to hazardous substances. Numerous studies have documented the detrimental health and environmental effects of such exposure, including respiratory illnesses, cancer, and ecological degradation. Socioeconomic disparities further exacerbate these impacts, with marginalized populations often bearing a disproportionate burden of pollution-related consequences.

Methods: This study adopts a literature review approach, synthesizing findings from peerreviewed academic journals, institutional reports, and relevant research to evaluate the health and environmental implications of chemical exposure in industrial areas.

Results and Discussion: The review reveals consistent evidence of significant adverse effects stemming from industrial pollution, particularly on vulnerable populations living in proximity to industrial facilities. The compounded risks include both acute and chronic health outcomes and degradation of environmental quality.

Conclusion: The implementation of effective mitigation strategies and the enforcement of regulatory policies are essential to reduce chemical exposure risks. Strengthening environmental governance and prioritizing public health in industrial planning are critical steps toward protecting communities in affected areas.

Keywords: Chemical Exposure, Pollution, Communities, Industry Area

Introduction

Indonesia is among the countries with a significant industrial presence, attracting numerous international companies to establish production facilities due to favorable factors such as low labor costs and a skilled workforce. The ability to sustain mass production without significant disruption further reinforces Indonesia's position as a strategic industrial hub. However, this industrial expansion poses serious environmental and public health concerns, particularly for residential communities near industrial zones¹.

Industrial operations are frequently associated with the release of hazardous chemicals that affect air, water, and soil quality. Roy et al. reported that industrial pollution accidents are most prevalent in countries like China, followed by the United States, South Korea, and India¹. Pollutants such as dust and heavy metals can accumulate in residential and commercial areas, adversely impacting human health. Similarly, Rovira et al. described the Tarragona incident in Spain, where emissions from petrochemical industries over the past two decades caused severe environmental degradation and health issues in surrounding communities².

In Indonesia, Purba et al. documented pollution in the Ciliwung River caused by household industries disposing of waste directly into the water, affecting the health and livelihood of nearby residents³. Domingo et al. found a correlation between proximity to petrochemical plants and higher rates of leukemia and other hematologic malignancies in countries including Taiwan, Spain, the United Kingdom, Italy, and Nigeria⁴. Suwandana et al. highlighted that exposure to industrial chemicals, when combined with climate variability, exacerbates health inequalities and environmental injustice in vulnerable populations⁵. Beronius et al. emphasized the complexity of chemical exposure in residential areas, identifying severe effects on air, water, soil, and vegetation due to petrochemical pollution⁶.

Although industrialization offers economic benefits such as job creation and increased local revenue, its environmental and health costs are substantial and often overlooked⁷. The cement industry, while essential to infrastructure development, contributes significantly to global pollution, accounting for approximately 7% of carbon dioxide emissions, alongside sulfur dioxide, nitrogen oxides, and particulate matter. It is estimated that the industry contributes around 5% of greenhouse gas emissions globally⁷. Sava et al. explained that pollutants produced by the cement industry—gases, liquids, and solids—stem from raw material combustion and can severely impact human health and the surrounding environment⁸.

Efforts to reduce such pollution must involve collaboration between government institutions, industrial companies, and the public. Strategies such as increasing chimney height, planting trees, and promoting the use of protective masks have shown potential in mitigating airborne heavy metal exposure in industrial areas⁹. Equally important is the implementation of proper waste management and public education on environmental hygiene. Widodo stressed the importance of immediate medical consultation for individuals experiencing symptoms of exposure, especially in polluted environments¹⁰.

The issue of pollution and chemical exposure is closely linked to environmental justice. In Indonesia, weak zoning regulations have led to the close proximity of residential settlements and industrial zones, partly due to workers choosing to live near their workplaces to reduce commuting time and costs¹¹. Despite existing mitigation strategies, many industries continue to neglect the dangers of chemical exposure, not only to workers but also to surrounding communities. Meanwhile, the affected populations often fail to prioritize their health, highlighting the urgent need for comprehensive policy interventions and long-term risk awareness⁹.

Methods

Protocol and search strategy

This study adopts a systematic and comprehensive literature review approach to examine the impact of chemical exposure on human health and environmental justice, with a particular focus on communities residing in close proximity to industrial or residential zones. The review critically analyzes peer-reviewed journal articles, books, and institutional reports published between 2010 and 2024 that are relevant to the research scope.

Academic sources were identified through structured searches of major scholarly databases, including PubMed, Scopus, and Google Scholar, as well as national journals indexed in SINTA and GARUDA. Additional literature was sourced from reports published by prominent organizations such as the World Health Organization (WHO), United Nations Environment Programme (UNEP), and Indonesia's Ministry of Environment and Forestry. The primary keywords used during the literature search included: "chemical exposure," "industrial areas," "health impacts," "environmental justice," and "toxic waste management."

Inclusion and Exclusion Criteria

To ensure the relevance and rigor of the literature reviewed, this study applied specific inclusion and exclusion criteria. Included studies were published between 2010 and 2024 and focused on topics related to industrial chemical exposure, associated health impacts, environmental pollution, and environmental justice. Sources were limited to those indexed in reputable academic databases such as Scopus, PubMed, and Google Scholar, as well as national databases including SINTA and GARUDA. Reports from credible environmental and health institutions, such as the World Health Organization (WHO), the United Nations Environment Programme (UNEP), and Indonesia's Ministry of Environment, were also considered. Studies were excluded if they did not specifically address the health or environmental consequences of industrial activities, if they focused solely on the chemical properties of pollutants without examining their effects on human or ecological systems, or if they lacked primary data or a clearly defined methodology.

Data Collection Process

Data collection was carried out through a systematic literature search using a set of predefined keywords, including "chemical exposure," "industrial area," "health impact," "environmental justice," "pollution," "toxic waste management," and "regulations." Relevant literature was retrieved from academic databases such as PubMed, Scopus, Google Scholar, as well as national platforms like SINTA and GARUDA. Articles and reports meeting the inclusion criteria were downloaded and reviewed in detail. Key information extracted from each source included the title, author(s), year of publication, research objectives, methodology, major findings, and conclusions. The analysis focused on identifying the types of hazardous chemicals and their exposure mechanisms, evaluating both short- and long-term health impacts, reviewing environmental policies and justice-related frameworks, particularly in the Indonesian context, and exploring mitigation strategies aimed at minimizing health and environmental risks. This comprehensive approach enabled a deeper understanding of the multifaceted impacts of chemical exposure on vulnerable communities.

Results and Discussion

A total of 45 relevant publications were identified and included in this systematic literature review after applying the predefined inclusion and exclusion criteria. These sources comprise peer-reviewed journal articles, institutional reports, and academic studies published between 2010 and 2024. The selected literature provides a diverse yet interconnected body of evidence concerning the health impacts of industrial chemical exposure and the broader implications for environmental justice, particularly in communities situated near industrial zones. The findings are categorized and analyzed thematically to provide a comprehensive understanding of the issues addressed (Table 1).

	Author(s)	Title / Focus	Objective	Methodology	Key Findings
1	Arjuna, A. B.,	Fire Risk	The purpose of	This study uses	The results of
	& Hasibuan, S	Analysis in	this study is to	hazard	this study are
	(2020)	The Chemical	identify	identification	to identify
		Industry using	hazards and	and risk	hazards in
		The Hazard	assess fire risks	assessment	operational
		Identification	in operational	methods.	activities in
		and Risk	activities in the	Determination	the chemical
		Assessment	chemical	of the severity,	industry,
		Method.	industry.	probability,	conduct risk
				and level of	assessments,
				fire risk is	and
				carried out	determine the
				through focus	level of risk
				group	and control of
				discussion with	fire- causing
				experts who	risks. A total
				are competent	of 15
				in fire risk	activities in
					the chemical
					plant studied
					have a high
					risk of fire
					with a high
					level of
					severity, but
					the chances

Table 1.	Summary	of Key	Study	Characteristics.
----------	---------	--------	-------	------------------

					of occurrence
					vary.
2	Nursyamsi,	Accumulation	The purpose of	Laboratory-	The results
	D., &	of heavy	this study was	based	showed that
	Husnain, H.	metals in rice	to evaluate the	experimental	the yield of
	(2015) J	grown in soil	efficiency of	design to	rice and rice
	Food Agri	irrigated with	chitosan and	assess the	straw
	Environ,	electroplating	Azolla as	effectiveness	increased
	13(3- 4), 121-	industry	coagulants and	of chitosan,	with all
	126.	wastewater	tea waste and	Azolla, tea	combinations
		treated with	peanut shells as	waste, and	of wastewater
		coagulants and	adsorbents for	peanut shells in	treatment
		adsorbents	treating	reducing heavy	with or
			electroplating	metal	without
			wastewater in	accumulation	wastewater
			removing	in soil and rice	treatment
			heavy metals	irrigated with	with
				treated	coagulants
				electroplating	and
				wastewater	adsorbents.
3	Rahmadani,	Hubungan	This study	This study will	Based on data
	N., & Syafri,	Antara Paparan	aims to explore	use a mixed	collected
	M. (2024).	Bahan Kimia	and analyze the	approach that	from surveys,
	Jurnal		relationship	combines	exposure
	Mitrasehat,		between	quantitative	measurement,
	14(2), 728-		exposure to	and qualitative	interviews,
	732.		hazardous	methods to	and health
			chemicals in	analyze the	record
			the workplace	relationship	analysis, the
			and health risks	between	results of the
			in industrial	exposure to	study show
			workers.	hazardous	the following
				chemicals in	findings:

				the workplace	Chemical
				and health	Exposure
				risks in	Profile,
				industrial	Workers in
				workers.	the studied
					industries are
					exposed to a
					variety of
					hazardous
					chemicals,
					including
					organic
					solvents
					(such as
					toluene and
					benzene),
					heavy metals
					(such as lead
					and mercury),
					and other
					industrial
					chemicals
					(such as
					formaldehyde
).
4	Azzahro, F.	Penentuan hasil	Analyzing how	the study uses	the results
	(2019).	evaluasi	to handle the	descriptive	showed that
	Journal of	pemilihan	air pollution in	analysis by	of 7 (seven)
	Research and	spesies pohon	near cement	assessing tree	dominant tree
	Technology,	dalam	industrial	elements	species
	5(2).	pengendalian		macroscopicall	identified,
		polusi udara		y to select the	there were 3
		pabrik semen		appropriate	(three)

		berdasarkan		tree species	dominant tree
		karakteristik		and can be	species that
		morfologi.		recommended	were very
				as an absorber	suitable, 3
				of gas	(three)
				pollutants and	dominant tree
				dust absorbers	species were
				based on tree	suitable, and
				suitability	only 1 (one)
				scoring.	dominant tree
					species were
					not suitable
					for air
					pollutant gas.
5	Budijono, &	Heavy metal	Research on	The findings	The results
	Hasbi, M.	contamination	heavy metals	were based on	showed that
	(2021)	in Koto	(Pb, Cd, Zn) in	both research	the highest
		Panjang Dam,	water,	and	concentration
		Indonesia.	sediment, and	observation.	of Zn was
			their		found in
			accumulation		water and
			has been		sediment,
			conducted on 6		followed by
			important		Pb and Cd.
			commercial		Similar
			fish species,		amounts of
			namely		heavy metals
			Cyprinus		were found to
			carpio,		build up in all
			Oreochromis		tissues that
			niloticus,		were studied.
			Osphronemus		The kidneys,
			gouramy,		gills, and

			Hamibagnus		muscles of all
			Hemibagrus		
			nemurus,		fish species
			Channa		showed the
			micropeltes,		most heavy
			and		metal
			Barbonymus		buildup. The
			schwanefeldii.		concentration
			Accumulation		of metals in
			of		the muscles
			heavy metals		of all fish
			was observed		species met
			in gill, kidney,		the limits for
			and muscle		human
			tissues.		consumption.
6	Putri, D.	Strategi	The study was	Finding flood	Furthermore,
	(2021).	Mitigasi	conducted by	disaster	land
	(Doctoral	Bencana Banjir	processing	mitigation	suitability
	dissertation,	Pada Kawasan	primary and	strategies in	analysis was
	Institut	Pemukiman Di	secondary data.	residential	carried out by
	Teknologi	Kabupaten	The results	areas in Kediri	overlaying
	Sepuluh	Kediri	showed that	Regency using	flood
	Nopember).		areas with high	the Simple	vulnerability
			flood	Multi-	maps,
			vulnerability	Attribute	landslide
			status were	Rating	vulnerability
			located in	Technique	maps, annual
			Badas, Kras,	Exploiting	rainfall maps,
			and Ringinrejo	Ranks	geological
			Districts; low	(SMARTER)	maps, slope
			vulnerability	method.	maps, and
			was in Semen,		soil type
			Ngancar,		maps. The
			Ngasem, and		results

			Grogol		showed that
			Districts; the		the total land
			rest were		in Kediri
			included in		Regency that
			moderate		was very
			vulnerability.		suitable for
			5		settlements
					was 8,344.69
					Ha (19.68%),
					suitable
					18,694.15 Ha
					(44.08%),
					marginally
					suitable
					10,995.14 Ha
					(25.93%),
					and not
					suitable was
					4,374.02 Ha
					(10.31%).
7	Sasmita, A.,	Pemetaan dan	This study	The noise	The highest
	Reza, M., &	Perhitungan	aims to	measurement	noise level is
	Rozi, R. M.	Pemaparan	determine the	method refers	99.4 dB with
	(2021). Al-	Tingkat	intensity of	to the noise	an exposure
	Ard: Jurnal	Kebisingan	noise produced	mapping	time of 0.3
	Teknik	pada Industri	by production	method, and	hours, and the
	Lingkungan,	Pengolahan	machines,	the instrument	lowest noise
	6(2), 68-	Kayu di	exposure time,	used is the	level is 67.3
	76.	Kecamatan	noise mapping,	Sound Level	dB with an
		Siak, Provinsi	and noise	Meter (SLM).	exposure time
		Riau.	control efforts.		of 475 hours.
					We can make
					control
L	L	L	L	L	 ຳ

					efforts from
					the source,
					transmission
					channel, and
					receiver to
					reduce noise.
8	Febriyana, N.	Identifikasi	This river is	Calculating	The Surabaya
	A. (2016.	Daya Tampung	used as a	pollution	River
	Institut	Beban	source of	capacity in the	requires a
	Teknologi	Pencemaran	drinking water	river Data	calculation of
	Sepuluh	Air Kali	and for	analysis using	the capacity
	Nopember.	Surabaya	industrial	the QUAL2Kw	to determine
		Segmen	production	program	the maximum
		Tambangan	processes. This	application to	limit of
		Cangkir-	river receives	calculate the	wastewater
		Bendungan	pollution loads	pollution load	that can be
		Gunung Sari	from domestic	entering the	discharged
		Dengan	waste,	Surabaya	into the river.
		Pemodelan	agricultural	River. Data	The
		QUAL2KW	waste, and	modeling is	monitoring
			industrial	carried out by	point area in
			waste.	trial and error	this study has
				until the model	5 segments.
				results are	The water
				obtained that	quality
				are appropriate	parameters
				(close to) the	analyzed are
				actual	pH,
				conditions.	temperature,
					DO, BOD,
					TSS, nitrate
					(NO3),
					ammonium

					(NH4), and
					phosphate
					(PO4).
9	Hariani, Y.	Pengaruh	Objective: To	Literature	Using
	(2023) Babul	Paparan Bahan	determine the	Review	inclusion and
	Ilmi Jurnal	Kimia terhadap	effect of	Method	exclusion
	Ilmiah Multi	Kesehatan	chemical		criteria, the
	Science	Reproduksi	exposure on		selection
	Kesehatan,	pada Pekerja	reproductive		process
	15(1).	2023:	health in		yielded 10
		Literature	workers.		articles for
		Review			review.
					Results:
					There are 10
					articles
					related to
					chemical
					exposure on
					reproductive
					health in
					workers
					reviewed, all
					stating that
					there is a
					significant
					relationship
					between
					chemical
					exposure and
					reproductive
					health.
10	Hutapea, O.,	Penerapan	The purpose of	Survey Method	In order for
	Kombih,	Program Alat	this activity is	Results This	this activity

	M. F.,	Pelindung Diri	to reduce	community	to continue,
	Rendrawan,	pada Pekerja	exposure to	service activity	supervision
	R., Putri, A.	dalam Upaya	benzene vapors	as a whole	from the
	R. A., &	Mengurangi	through the	went smoothly.	company and
	Ardita,	Paparan Uap	application of	went shioting.	from the
	S. (2022).	Bahaya Kimia	appropriate		Occupational
	Jurnal	Di Industri	personal		Health Effort
	Pengabdian	Percetakan	protective		Post
	Masyarakat,	Tereotuntun	equipment.		(Sepetmapt)
	5(1), 1-8.		equipment		is needed
	0(1), 1 0.				regarding
					worker
					discipline in
					using
					personal
					protective
					equipment
11	Febriyanti, A.	Mathematical	To develop a	Mathematical	Provided a
	L.,	Model of Air	mathematical	modeling of air	mathematical
	Pancahayani,	Pollution	model for air	pollution	model for air
	S., & Faisal,	Spread to	pollution	dispersion.	pollution
	M. (2022)	Determine Safe	spread to		spread and
		Distance of	determine a		determined
		Residential	safe distance		the safe
		Areas from	from industrial		distance for
		Industrial	chimneys.		residential
		Smoke Stacks			areas.
12	Trianisa, K.,	The Impact of	To study the	Statistical	Found a
	Purnomo,	Coal Industries	impact of coal	analysis of air	significant
	E. P., &	on Air	industries on	quality data	impact of
	Kasiwi, A. N.	Pollution and	air pollution	related to coal	coal
	(2020)	the Balance of	and its	industries in	industries on
		World Air	influence on	India.	air pollution

					J
		Quality Index	the World Air		and
		in India	Quality Index.		deterioration
					of air quality
					in India.
13	Winda, W.,	Physiological	To analyze the	Experimental	Observed
	Kardhinata,	Response of	physiological	study on the	physiological
	H., Nurtjahja,	Urena lobata L.	response of	effects of air	stress on
	K., &	to Air Pollution	Urena lobata L.	pollution on	Urena lobata
	Fauziah, I.	in Industrial	to air pollution	Urena lobata L.	L. due to
	(2024)	Environments	in industrial	in industrial	exposure to
			environments.	settings.	industrial air
					pollution.
14	Azzahro, F.	Determining	To evaluate	Morphological	Identified
	(2020)	the Results of	tree species	evaluation of	optimal tree
		Tree Species	selection for	different tree	species for
		Selection for	controlling air	species for	controlling
		Controlling Air	pollution in	pollution	air pollution
		Pollution in	cement	control.	in cement
		Cement	factories based		factories.
		Factories	on		
		Based on	morphological		
		Morphological	characteristics.		
		Characteristics			
15	MARPAUNG	The Impact of	To examine the	Survey and	Found
	, A. P. (2023)	Air Pollution	impact of air	health	significant
		on Lung Health	pollution on	assessment of	negative
		in Children in	lung health of	children	effects of air
		Industrial	children in	exposed to air	pollution on
		Areas of	industrial areas	pollution in	children's
		Medan City	of Medan.	industrial	lung health in
				areas.	industrial
					areas.

16	Afifah, A. S.,	Evaluation of	The purpose of	This study was	From 2014 to
	Septiariva,	domestic	this research is	carried out	2020, there
	I. Y.,	wastewater and	to determine	through direct	has
	Suhardono,	river	the current	observation,	been a
	S., Suryawan,	management in	conditions and	documentation	measurable
	I. W. K., &	Belian Village,	make	of activities,	increase in
	Sari, M. M.	Batam City	recommendatio	and literature	access to
	(2023)	Sub- district,	n s for	searches.	drinking
		Indonesia	domestic		water and
			wastewater		sanitation in
			management		Batam City.
			solutions in		Despite the
			Belian Village,		increase, in
			Batam City.		Belian
					Village,
					wastewater is
					still
					discharged
					directly into
					the river
					body. This
					will reduce
					the quality of
					the river. To
					reduce the
					negative
					impacts of
					these
					activities,
					communal
					treatment
					solutions can
					be applied.

					By considering operations
					and
					maintenance,
					up- flow filter
					tanks can be
					used for
					wastewater
					treatment.
17	Yudita, A.,	Analisis	The purpose of	Determination	Overall, the
	Akbar, A. A.,	Kualitas Air	this pollution	of water	quality status
	& Saziati, O.	dan	control is to	quality status	of the Retok
	2021	Pengendalian	achieve	using the	River shows
		Pencemaran	environmental	Pollution Index	that it is
		Air Sungai	sustainability	(IP) method.	included in
		Retok	and improve		the lightly
		Kabupaten	the water		polluted
		Kubu Raya.	quality of the		category with
			Retok River.		a Pollution
					Index (IP)
					value ranging
					from
					2.152 -
					2.442.
					Pollution
					control
					strategies for
					the lightly
					polluted
					Retok River
					can be carried
					out by

					reducing the
					pollution load
					by involving
					the
					community
18	Kamasnuri, U.	Analisis	The aim of this	The research	The results of
	N., Widiyanti,	Kualitas Mata	study was to	method used	the study
	B. L., &	Air Lingkok	test the quality	was a survey	showed that
	Darmawan,	Pancor Untuk			several
	M. I. (2023).	Peruntukan Air	Pancor spring	quantitative	parameters
		Bersih di	water.	descriptive	still met the
		Dusun Jangkar		approach.	standards
		Desa			(color,
		Setungkep			temperature,
		Lingsar			odor, taste,
		Kecamatan			turbidity,
		Keruak.			hardness,
					nitrate, and
					pH) while the
					parameters
					that exceeded
					the standard
					quality limits
					were TDS,
					BOD, COD,
					DO,
					and E-Coli
					bacteria and
					detergent.
19	Rina, B. N. P.	Analisis	Analyzing	This study uses	The results
	N.,	Tingkat	traffic noise	a quantitative	showed that
	Darmawan,	Kebisingan	levels on the	descriptive	two of the
	M. I., &	Lalu Lintas	jenggik – terara	approach.	three

Susanti, D. R.	pada Jalan	highway, east	locations had
(2024).	Raya Jenggik-	lombok district,	noise levels
	Terara	west nusa	exceeding the
	Kabupaten	tenggara	established
	Lombok Timur	province	quality
	Provinsi Nusa		standards
	Tenggara Barat		(60-65 dBA),
			while one
			location met
			the quality
			standards at
			the lowest
			noise level
			but exceeded
			the limit at
			the peak
			noise level. In
			conclusion,
			the traffic
			noise levels
			in the area,
			especially in
			the two
			locations,
			have a
			negative
			impact on the
			comfort and
			quality of life
			of residents,
			as well as
			disturbing the
			environment

					around
					schools and
					government
					offices.
20	Ridwan, A.	Gangguan	Mengetahui	Literature	The treatment
	M., & Lestari,	Pendengaran	penyebab dan	review	provided may
	A. D. (2023).	Akibat Paparan	solusi		prevent or
	Jurnal	Toluen.	Gangguan		delay
	Penelitian dan		Pendengaran		deterioration
	Karya Ilmiah		Akibat Paparan		but does not
	Lembaga		Toluen		repair the
	Penelitian				damage that
	Universitas				has already
	Trisakti, 144-				occurred.
	163.				
21	Sari, I. P.,	Penyuluhan	Analyzing and	Literatur	The results of
	Safitri, D. M.,	Risiko Bahan	studying	review and	the activity
	Septiani, W.,	Kimia Laundry	Laundry	socialization	evaluation
	& Su'udi,	serta Penerapan	Chemical Risk		show that this
	B. C. (2023).	Keselamatan	Counseling and		counseling
	Abdimas	dan Kesehatan	the		activityhas
	Universal,	Kerja (K3) di	Implementation		an
	5(2), 198-	Industri	of		impact on
	204.	Laundry.	Occupational		increasing the
			Safety and		knowledge of
			Health (K3) in		laundry
			the Laundry		workers
			Industry.		regarding the
					risks of
					laundry
					chemicals
					and how to
					prevent and

					handle them.
22	Maulida, A.,	Hazardous	Understanding	literature	As part of the
	Oktaviani, A.,	waste should	Hazardous	review	manufacturin
	Pakpahan, H.	be managed	waste should		g process,
	S., &	properly for	be managed		industries are
	Wikaningrum,	development of	properly for		being urged
	T. (2022)	better waste	development of		to produce
	Jurnal	management	better waste		less
	Penelitian dan	strategies	management		hazardous
	Karya Ilmiah		strategies		waste.
	Lembaga				Because it is
	Penelitian				impossible to
	Universitas				totally
	Trisakti, 193-				prevent
	209.				hazardous
					waste, the
					only option is
					to reduce,
					recycle, and
					treat it. As a
					result, actions
					should be
					taken to
					maximize use
					of modern
					technologies
					while
					minimizing
					environmenta
					l impact.
23	Utari, E.,	Pemahaman	This study	The method	Public
	Handayani, T.	masyarakat	aims to find	used in this	understanding
	A., &	tentang	out,	study is a	of industrial

	Nurfitriniha,	pencemaran	understand, and	descriptive	waste is that
		limbah industri	raise public	method with	industrial
	W. S. (2022)		-		
	Biodidaktika:	terhadap	awareness of	primary and	activities
	Jurnal Biologi	lingkungan	the impact of	secondary data	have negative
	dan	hidup	industrial waste	collection	impacts,
	Pembelajaran	kecamatan	pollution on the	techniques.	namely
	nya, 17(2).	Ciwandan kota	environment		polluting the
		Cilegon	and population		environment
			of Cilegon city,		and can cause
			both air, water,		damage to
			and land		natural
			pollution.		resources,
					ecosystem
					imbalance
					and also
					affect the
					health of the
					surroundin
					g population
24	Bhaskara, O.	Analisis	analyzing the	This study	The
	S.,	sebaran air	distribution of	used a case	measurement
	Sukmawati, P.	limbah industri	industrial	study approach	results of
	D., &	rumah	wastewater	to analyze the	RPA liquid
	Warisaura, A.	pemotongan	from chicken	distribution of	waste exceed
	D. (2022).	ayam terhadap	slaughterhouse	RPA	the quality
	Jurnal	kualitas air	s on the water	wastewater on	standard. The
	Teknologi,	Sungai Desa	quality of the	river water	quality of
	15(2),	Kalitirto,	Kalitirto	quality in	river water
	137-143.	Kecamatan	Village River,	Kalitirto	before and
		Berbah,	Berbah	Village,	after RPA is
		Kabupaten	District,	Berbah	different. The
		Sleman.	Sleman	District,	result of the
		Sieman.	Regency.	Sleman	correlation
			Regency.	Siciliali	CONCIACIÓN

				Regency. Data	coefficient is
				collection was	
				carried out by	meaning that
				taking samples	the further
				of RPA	away the
				wastewater,	RPA waste is
				RPA	in river water,
				groundwater,	the smaller
				and river	the pollution
				water.	index value.
					The
					probability
					result is
					0.085,
					meaning that
					the
					relationship
					between the
					presence of
					liquid waste
					and the
					pollution
					index is not
					significant.
25	Ratuannisa,	Studi	aims to convey	Batik liquid	The
	T., Ekawati,	Pengolahan Air	another side of	waste	examination
	E., Yulia, E.,	Limbah Batik	the batik	processing	of wastewater
	Purwasasmita,	pada Skala	industry,	methods	samples
	B. S., &	Industri Rumah	namely	include	showed that
	Nugraha, A.	Tangga dan	examining the	physical	batik
	B. (2023).	Usaha Kecil	conditions and	methods	wastewater
	Dampak,	Menengah di	needs of batik	(filtration,	did not meet
	20(1), 8-15.	Cirebon,	liquid waste	sedimentation,	the waste

		Indonesia.	processing in	centrifugation,	quality
			the batik	flotation,	standards and
			industry.	adsorption)	potentially
			The focus of	(Indrayani,	harmed the
			the research is	2018),	environment.
			mainly on	chemical	The
			Small and	methods	respondents
			Medium	(coagulation,	generally use
			Enterprises	neutralization,	synthetic
			(SMEs) and	electrochemistr	dyes, and
			household-	У	were unaware
			scale	, ozonation)	of its impact
			industries.	(Indrayani &	on the
			Research data	Rahmah,	surrounding
			include the	2018), or	environment.
			characteristics	biological	
			of batik liquid	methods	
			waste, field	(microorganis	
			survey results,	m activity,	
			and the impact	aquatic plants)	
			of batik liquid	(Priadie, 2017).	
			waste in Plered	In its	
			District,	application,	
			Cirebon.	these methods	
				are often	
				combined to	
				achieve higher	
				efficiency and	
				cost reduction.	
21	Beronius, A.,	Methodology	To present a	Health risk	Proposed a
	Zilliacus, J.,	for health risk	methodology	assessment	comprehensiv
	Hanberg, A.,	assessment of	for assessing	methodology	e
	Luijten, M.,	combined	health risks	development,	methodology

	1 17 /	·	f	· 1. ·	f
	van der Voet,	exposures to	from combined	involving	for evaluating
	H., & van	multiple	exposures to	chemical	combined
	Klaveren, J.	chemicals	multiple	exposure	chemical
			chemicals.	models and	exposures
				hazard	and
				assessment.	associated
					health risks.
22	Domingo, J. L., Marquès, M., Nadal, M., & Schuhmache r, M.	Health risks for the population living near petrochemical industrial complexes. 1. Cancer risks: a review of the scientific literature	Toevaluatecancerrisks forpopulationsnearlivingnearpetrochemicalcomplexesbasedonscientificliterature.	Literature review of studies on cancer risks near petrochemical industrial complexes.	Found that residents near petrochemical complexes face higher cancer risks, with various factors contributing to exposure.
23	Hong, J., Kang, H., An, J., Choi, J., Hong, T., Park, H. S., & Lee, D. E.	Towards environmental sustainability in the local community: Future insights for managing the hazardous pollutants at construction sites	To explore ways to manage hazardous pollutants at construction sites for environmental sustainability.	Environmental analysis and strategies for managing hazardous pollutants at construction sites.	Suggested several strategies for pollutant management, aiming to reduce environmenta l impact and enhance sustainability in local communities.

24	<u> </u>		T : 1		
24	Siddiqua, A.,	An overview of			Identified
	Hahladakis, J.	the	environmental	environmental	major
	N., & Al-	environmental	and health	pollution and	environmenta
	Attiya, W. A.	pollution and	impacts of	health effects	l and health
	К.	health effects	waste	from waste	risks
		associated with	landfilling and	disposal	associated
		waste	open dumping.	practices.	with
		landfilling and			landfilling
		open dumpin g			and open
					dumping,
					emphasizing
					the need for
					improved
					waste
					management
					practices.
25	Rovira, J.,	Environmental	To assess the	Case study of	Found that air
	Nadal, M.,	impact and	environmental	air quality and	pollution
	Schuhmacher,	human health	and health risks	health risk	from the
	M., &	risks of air	of air pollutants	assessment	complex
	Domingo, J.	pollutants near	near a	near a	contributes to
	L.	a large	chemical/petroc	chemical/petroc	significant
		chemical/petro	h emical	hemical	health risks
		c h emical	complex.	complex.	for nearby
		complex:			residents,
		Case study in			including
		Tarragona,			respiratory
		Spain			and
					cardiovascula
					r diseases.
26	Okoye, C. O.,	Toxic	To investigate	Review of	Revealed that
	Addey, C. I.,	chemicals and	the toxic	studies on the	micro- and
	Oderinde, O.,	persistent	chemicals and	presence of	nanoplastics

				1	· · · · · · · · · · · · · · · · · · ·
	Okoro, J. O.,	organic	persistent	toxic chemicals	are
	Uwamungu, J.	pollutants	organic	and persistent	significant
	Y.,	associated with	pollutants	pollutants in	carriers of
	Ikechukwu, C.	micro-and	associated with	micro- and	toxic
	K., & Odii, E.	nanoplastics	micro- and	nanoplastics.	chemicals
	C	pollution	nanoplastics		and persistent
			pollution.		pollutants,
					raising
					concerns for
					both
					environmenta
					l and human
					health.
27	Westenhöfer,	Walkability	To review	Systematic	Found that
	J., Nouri, E.,	and urban built	health impact	review of	walkable
	Reschke, M.	environments	assessments on	studies	urban
	L., Seebach,	— a systematic	the walkability	assessing the	environments
	F., &	review of	of urban	health impacts	have positive
	Buchcik, J.	health impact	environments.	of walkability	effects on
		assessments		in urban areas.	public health,
		(HIA)			including
					improved
					mental and
					physical well-
					being.
28	Lee, Y. W.,	Estimation of	To estimate air	Air quality	Estimated
	Kim, Y. P., &	Air Pollutant	pollutant	modeling and	high levels of
	Yeo, M. J	Emissions from	emissions from	pollutant	air pollution
		Heavy Industry	North Korea's	emission	from heavy
		Sector in North	heavy industry	estimation for	industry,
		Korea	sector.	heavy	raising
				industries in	concerns
				North Korea.	about public

					health and
					environmental
				_	sustainability
29	Jang, J., Han,	Analysis of the	To analyze the	Data analysis	Found that
	Е., Нео, Ј.,	National Air	National Air	of national air	certain areas
	Choi, S., Park,	Pollutant	Pollutant	pollutant	in South
	J., Lee, K. S.,	Emissions	Emissions	emission	Korea
	& Yoo, C.	Inventory	Inventory for	inventories.	experience
		(2021) in the	South Korea.		high levels of
		Republic of			air pollution,
		Korea			with key
					sources being
					transportation
					and industrial
					sectors.
30	Ju, T., Lei,	A new	To propose a	Development	Introduced an
	M., Guo, G.,	prediction	new method for	of a prediction	improved
	Xi, J., Zhang,	method of	predicting	model based on	prediction
	Y., Xu, Y., &	industrial	industrial	emission	method for
	Lou, Q.	atmospheric	atmospheric	standards and	industrial
		pollutant	pollutant	pollutant	pollutant
		emission	emissions.	quantification.	emissions,
		intensity based			offering a
		on pollutant			more accurate
		emission			tool for
		standard			environmental
		quantification			regulation.
31	Wen, W.,	Analysis of the	To analyze the	Technological	Found that
	Deng, Z., Ma,	synergistic	synergistic	analysis and	integrating
	X., Xing, Y.,	benefits of	benefits of	simulation of	certain
	Pan, C., Liu,	typical	technologies	pollution and	technologies

	eads to
L. for pollution reducing reduction signature	gnificant
	eductions in
	oth pollution
	nd carbon
	ne iron and
	teel industry.
Tianjin–Hebei	
region	
	howed that
	ntelligent
	ystems
	gnificantly
	nhance
	nergy
industry- of the power engineering. ef	fficiency
evidence from industry in an	nd
substation China. co	ontribute to
engineering in th	ne green
China tra	ansformatio
n	of the
po	ower
in	ndustry.
33 Sing, T. F., Tracking To track Pollution Id	lentified
Wang, W., & industry pollution source tracking m	najor
Zhan, C. pollution sources from and health risk in	ndustrial
sources and industries in assessment po	ollution
health risks in China and using industrial so	ources and
China assess related data. lir	nked them
health risks. to	health risks
in	1
su	urrounding

					populations.
34	Li, S., Zhu,	Ecosystem-	To develop an	Use of AI and	Successfully
	G., Li, X.,	inspired model	AI model	ecosystem-	predicted the
	Wan, P.,	and artificial	predicting the	inspired	pollutant
	Yuan, F., Xu,	intelligence	pollutant	models to	consumption
	S., &	predicts	consumption	predict water	capacity of
	Hursthouse,	pollutant	capacity of	treatment	coagulation
	A. S.	consumption	coagulation in	efficiency.	processes,
		capacity by	drinking water		improving the
		coagulation in	treatment.		effectiveness
		drinking water			of drinking
		treatment			water
					treatment.
35	Heris, S. Z.,	The influence	To evaluate the	Experimental	Found that
	Ebadiyan, H.,	of nano filter	influence of	study on nano	nano filter
	Mousavi,	elements on	nano filter	filter elements	elements
	S.B., Nami, S.	pressure drop	elements on	in town border	significantly
	Н., &	and pollutant	pressure drop	stations to	enhance
	Mohammadp	elimination	and pollutant	assess pollutant	pollutant
	o urfard, M.	efficiency in	elimination	elimination and	removal
		town border	efficiency.	pressure drop	efficiency,
		stations			with a
					manageable
					increase in
					pressure drop.
36	Bedane, D. T.,	Microalgae and	To explore the	Experimental	Demonstrated
	& Asfaw, S.	co-	use of	use of	that
	L.	culture for	microalgae and	microalgae and	microalgae
		polishing	co-culture for	co-culture	and co-
		pollutants of	polishing	techniques for	culture
		anaerobically	pollutants in	wastewater	significantly
		treated agro-	anaerobically	treatment.	improved

				1	
		processing	treated		pollutant
		industry	wastewater		removal in
		wastewater: the	from agro-		agro-
		case of	processing		processing
		slaughterhouse	industries.		wastewater
					treatment.
37	Chen, J.,	Evaluating	To evaluate	Mobile air	Identified key
	Mölter, A.,	background	traffic-related	quality	traffic-
	Gómez-	and local	pollutant	monitoring	related
	Barrón, J.	contributions	hotspots and	using Google	pollutant
	Р.,	and identifying	the contribution	Air View in	hotspots and
	O'Connor, D.,	traffic-related	of local and	Dublin, Ireland.	assessed the
	& Pilla, F.	pollutant	background		contributions
		hotspots:	pollution.		of local and
		insights from			background
		Google Air			pollution in
		View mobile			urban areas.
		monitoring in			
		Dublin, Ireland			
38	Jang, H.,	Environmental	To assess the	Environmental	Found a
	Choi, K. H.,	risk score of	environmenta 1	risk scoring	strong
	Cho, Y. M.,	multiple	risk score of	C	association
	Han, D., &	pollutants for	multiple	exposure data	between
	Hong, Y. S.	kidney damage	pollutants for	from	exposure to
	2,	among	kidney damage	occupational	multiple
		residents in	among	and	pollutants and
		vulnerable	vulnerable	environmental	kidney
		areas by	residents in	pollutants.	damage in
		occupational	Korea.	ronomius.	vulnerable
		chemical	11010u.		populations.
		exposure in			Populations.
		Korea			
		Notea			

39	Cui, D., Cox,	Evaluating non	To evaluate	Non-targeted	Highlighted
	J., Mejias, E.,	- targeted	non- targeted	chemical	effective
	Ng, B.,	analysis	analysis	analysis of	methods for
	Gardinali, P.,	methods for	methods for	organic	assessing
	Bagner, D.	chemical	characterizing	contaminants in	children's
	M., &	characterizatio	organic	various	exposure to
	Quinete, N.	n of organic	contaminants	matrices.	organic
		contaminants	and estimating		contaminants,
		in different	children's		contributing
		matrices to	exposure.		to better risk
		estimate			management
		children's			strategies.
		exposure			
40	Stakes, K.,	Exposure Risks	To assess fire	Fire behavior	Identified key
	Willi, J. M.,	and Potential	dynamics and	simulation and	risks and
	Chaffer, R.,	Control	thermal risk in	thermal risk	proposed
	Madrzykows	Measures for a	a fire behavior	analysis in a	control
	k i, D., &	Fire Behavior	lab training	lab training	measures for
	Horn, G. P.	Lab Training	structure.	structure.	reducing
		Structure: Part			thermal and
		A—Fire			fire-related
		Dynamics and			risks in lab
		Thermal Risk			environments

Chemical exposure around industrial areas remains a significant environmental and public health problem. Numerous studies provide strong evidence that industrial pollutants contribute to serious health problems, environmental degradation, and socioeconomic inequalities. This discussion combines findings from multiple studies, identifies relationships and differences, and provides a comprehensive analysis based on environmental justice theory and public health principles¹¹.

1. Correlations Among Studies

1.1 Health Impacts of Chemical Exposure

Several studies highlight serious health risks from long-term exposure to industrial pollutants. Okoye et al. (2022) and Pathak et al. (2022) showed that individuals living near industrial areas are at higher risk of respiratory diseases, developmental disorders, and cancers due to inhalation and ingestion of hazardous substances^{12,13}.

Domingo et al. (2021) conducted a systematic review and found a higher prevalence of leukemia and other hematological malignancies in populations living around petrochemical complexes in various countries⁴. Rahmadani & Syafri (2024) also emphasized that industrial workers exposed to hazardous chemicals such as benzene, toluene, and heavy metals showed increased respiratory problems, neurological disorders, and skin irritation. These findings are in line with Beronius et al. (2020), who developed a risk assessment methodology to highlight how multiple pollutants can have harmful synergistic effects, increasing the potential for exposure to be more risky^{6,14}.

1.2 Environmental Contamination and Food Safety Risks

Industrial waste pollutes not only the air but also the soil and water, increasing environmental and food safety risks. Nursyamsi & Husnain (2015) found that electroplating industrial wastewater causes the accumulation of heavy metals in agricultural soil and rice plants, increasing the risk of chronic heavy metal poisoning in consumers. Budijono & Hasbi (2021) studied heavy metal pollution in the Koto Panjang Dam and reported that lead (Pb) and cadmium (Cd) levels exceeded safe limits, affecting the aquatic ecosystem and the safety of fish consumption. Afifah et al. (2023) reported that industrial wastewater in Batam City is often discharged directly into rivers without adequate treatment, worsening environmental pollution. These studies show that hazardous substances in industrial waste are not only confined to industrial areas but also enter the food chain, increasing health risks even in populations far from the area¹⁵⁻¹⁷.

2. Environmental Justice and Socioeconomic Inequality

2.1 Unequal Exposure in Low-Income Communities

Environmental justice theory suggests that low-income and marginalized communities often face disproportionate impacts from industrial pollution due to proximity to hazardous areas, weak enforcement of regulations, and socioeconomic constraints¹⁷. Poerwati & Gai (2017) found that many low-income workers in Indonesia live close to industrial areas due to affordable housing, despite being at high risk from air and water pollution. Siddiqua et al. (2020) discuss how housing policies often force marginalized groups to live near industrial areas, increasing their exposure to hazardous chemicals such as sulfur dioxide and nitrogen oxides^{10,18}. Westenhöfer et al. (2023) analyze urban environments and find that poorly planned industrial areas contribute to higher pollution in low-income areas, exacerbating public health inequalities. These studies highlight systemic inequalities in pollution exposure and the need for more equitable urban policies and planning¹⁹.

2.2 Limited Access to Health Services and Mitigation Measures

Another environmental justice issue is limited access to health services and mitigation measures in affected communities. Indahsari et al. (2018) found that children in low-income neighborhoods near industrial areas suffered from higher rates of respiratory illnesses but had limited access to adequate health services. Rina et al. (2024) analyzed noise pollution levels in industrial areas and found that despite exposures exceeding safe health limits, government intervention was minimal. These findings suggest that environmental risks are exacerbated by poor health infrastructure, which leaves vulnerable populations without adequate medical support^{20,21}.

3. Conflicting Findings and Controversies

While most studies agree on the negative impacts of chemical exposure, there are some differences regarding the effectiveness of mitigation strategies.

3.1 Effectiveness of Pollution Reduction Strategies

Sava et al. (2023) stated that adjusting the height of smokestacks, planting trees, and using personal protective equipment can significantly reduce exposure. Widodo (2013) argued that these strategies are insufficient without strict industrial regulation and effective waste management^{8,9}. Hong et al. (2021) proposed that real-time pollution monitoring systems and advanced filtration technologies can improve control of industrial pollutants. These conflicting perspectives highlight the need for a multi-layered approach, combining technological advancements, policy enforcement, and community engagement for effective pollution reduction²².

3.2 Industrial Growth vs. Environmental Protection

There is debate about the trade-off between industrial growth and environmental sustainability. Solihat et al. (2025) argued that the cement industry, despite its economic benefits, remains one of the world's most significant polluters. Liang et al. (2024) emphasized that intelligent technology and green industrial transformation can reduce industrial pollution while maintaining economic growth. This discussion shows that sustainable industrial development must integrate green technologies and regulatory frameworks to minimize environmental damage^{7,23}.

4. Grand Theory Perspective: Precautionary Principle & Environmental Justice

4.1 Precautionary Principle in Environmental Health

The precautionary principle advocates taking precautions before harm occurs, even when scientific certainty is incomplete. Early risk assessment, as proposed by Beronius et al. (2020), to evaluate cumulative chemical exposures before widespread health damage occurs. Government interventions, such as zoning regulations to distance residential areas from high-risk industrial areas, thereby reducing direct exposure to pollutants⁶.

4.2 Strengthening Environmental Justice Policies

Tanti et al. (2025) emphasize that Indonesia's environmental policies lack strong enforcement mechanisms, allowing industries to avoid liability for pollution. WHO (2004) provides global standards for industrial pollution control, recommending mandatory waste treatment, emission limits, and public health monitoring. Integrating this framework into policymaking will help governments prioritize public health while ensuring the sustainability of industries. Based on the results and also the author's discussion related to the review of various literature, there is exposure to chemicals that have a negative impact not only on the surrounding environment but also on the community living near the industrial area. The existence of an industrial area that is built is, of course, formed due to economic needs in an area. In addition, the existence of a strategic area accompanied by the need for companies to obtain large land generally makes industrial areas appear in a city or district²⁴.

Based on the Okoye et al., (2022) journal, it explains that exposure to chemicals that have an impact on the community around the industrial area has significant health effects. This is due to the increased risk of chronic diseases, especially respiratory diseases, in people living around the industry. This study is also shown by the Pathak et al., (2022) journal, which provides contributions related to research results that show environmental contamination due to hazardous chemicals and ultimately have an impact on human health problems, for example, on developmental disorders in children and also other serious diseases such as the risk of cancer and also respiratory risks such as ARI^{12,13}.

Other literature studies show that often exposure to chemicals is only assessed from air pollution so that the air that is inhaled is considered dangerous and can cause problems with human health. Especially the health of the community living around the industrial area. But in fact, exposure to chemicals can also pollute the soil or water around industrial areas on a large scale. So even though communities and residential areas are close to the industry with a certain radius, for example, 3 to 5 km, because of heavy pollution in the environment, the area is still affected and also exposed to chemicals. The impacts are, of course, very numerous, starting from the prohibition of local communities to plant, such as vegetables and also trees for fruit, because it is feared that the soil contains chemicals. Likewise with groundwater used for daily human activities such as bathing or for sanitation because it is possible that the water contained is also contaminated by waste and also the results of the industry. Especially if the industry manages products with complex chemicals and quite high formulations, for example, products containing plastic, there are industries that manage medicines, materials such as paint or mining such as oil and gas, and several other industries that use chemicals as the main ingredients in their processing¹¹⁻¹³.

Chemical exposure also not only affects the health of the community as a whole but also raises environmental justice issues. For example, with low socio-economic status, the facilities offered and obtained by the community around the industrial area are generally very limited. They prioritize economic conditions where housing or land use around the industry is a decent place to live but does not meet health standards or non- health standards. This is indicated by the existence of cheap housing or land that can be purchased according to the economic capabilities of the community and the surrounding community. In addition, there is often a lack of access related to health services and resources for risk mitigation that can help reduce the adverse health impacts of exposure to these chemicals. Based on Muhafid (2016), even Indonesia curriculum using explanation about how dangerous the impact of chemical from factory/industry if development is really bad²⁵.

According to the Anik et al., (2024) study, effective enforcement of regulations can help reduce the adverse impacts of exposure to chemicals for communities living in industrial areas. However, as we know, regulatory enforcement is often ignored by various parties because there is no direct impact felt. Residential areas are often the main targets of industrial activities, so they are often directly exposed to the negative impacts of industrial waste (Siddiqua et al., 2020). Some commonly found B3 substances include heavy metals such as lead and mercury, hazardous organic compounds such as pesticides and industrial chemicals, and air pollutants such as sulfur dioxide and nitrogen dioxide. Exposure to hazardous substances contained in B3 waste can pose a serious threat to human health. The impacts can vary, from mild symptoms such as skin irritation and respiratory problems to more serious risks, such as developing chronic diseases such as cancer. Children, with immune systems that are not yet fully developed, and the elderly, who are susceptible to health complications, are among the groups most vulnerable to the negative impacts of B3 pollution^{18,26}.

5. Chemical Exposure and Environmental Justice

Environmental justice issues arise when communities with low socio-economic status, who often live close to industrial facilities, face higher exposure to chemicals. Lack of access to health services and resources for risk mitigation worsens the health impacts experienced by these communities²⁰. To address this issue, an integrated approach involving strict environmental monitoring, effective regulatory enforcement, and community empowerment programs is needed. Increasing public awareness of the dangers of chemical exposure and preventive measures is also important to reduce health risks. Overall, this literature review emphasizes the importance of attention to the impacts of chemical exposure in communities around industrial areas and the need for collaborative efforts to improve health and environmental justice for affected communities. Exposure to air pollution can lead to a variety of health problems. Especially for babies and children whose immune systems are not yet fully developed. Air pollution occurs when the air inhaled is mixed with toxic substances, such as carbon monoxide and nitrogen dioxide. These substances can come from factory waste, vehicle exhaust, or cigarette smoke. In addition, don't forget to complete your child's immunizations and teach them healthy living habits, including washing their hands diligently with soap and running water. Air pollution can not only harm children but also all family members. Therefore, do the tips and methods above to reduce exposure to air pollution. If air pollution causes complaints and health problems in your little one, you should immediately consult a doctor to get the right treatment 27 .

Based on BRIN research by Tanti et al., (2025) explained the impact of hazardous material pollution, including chemicals, on residential areas is one of the serious challenges faced by modern society. Among the various types of pollution, pollution by Hazardous and Toxic Materials (B3) is a very real threat to human health and well-being. Hong et al., (2022), explained residential areas are not immune from this negative impact, with damaging consequences for the environment and human life around them. B3 pollution refers to waste containing hazardous and toxic substances, either in solid, liquid, or gas form^{22,24}. B3 pollution not only threatens human health but also damages the natural ecosystem around residential areas. B3 pollution carries threats that go beyond human health, causing serious damage to the natural ecosystem around residential areas. Water contaminated by industrial waste not only threatens human life but also poses a risk of mass mortality for various living things in it. Polluted soil also has serious impacts, inhibiting the growth of plants and animals that depend on it. Thus, B3 pollution does not only impact one aspect but also poses a damaging threat to the balance of the ecosystem and the survival of living things around residential areas²⁸.

6. Preventive Way for Chemical Exposure

The impact of Hazardous and Toxic Materials (B3) pollution on residential areas is that B3 pollution has serious consequences for the environment and human health in the surrounding area. Residential areas are vulnerable to B3 pollution because they are often the target of industrial activities, which can result in direct exposure to hazardous substances. To address the problem of B3 pollution in residential areas, appropriate preventive and intervention measures must be taken by the government, industry, and local communities. This includes the implementation of strict regulations regarding B3 waste management, public education about the dangers of B3 pollution, the use of environmentally friendly technology in production, and efforts to clean up and rehabilitate polluted environments²⁹.

7. Environmental justice

The issue of chemical exposure in industrial areas extends beyond public health concerns, touching upon the broader dimension of environmental justice. Communities with lower socioeconomic status are often disproportionately burdened by industrial pollution due to their proximity to hazardous sites and the lack of robust legal protections¹⁸.

7.1 Disparities in Exposure Across Social Groups

Siddiqua et al. (2020) demonstrated that low-income residential areas are frequently situated in close proximity to industrial zones, which significantly increases the inhabitants' exposure to hazardous substances. In the Indonesian context, Poerwati and Gai (2017) found that weak zoning regulations have resulted in the establishment of industrial facilities near densely populated residential areas, exacerbating the exposure risk for vulnerable communities^{10,18}.

7.2 Impacts on Vulnerable Populations: Children and the Elderly

- Children are particularly susceptible to industrial air pollution due to their immature respiratory systems. Exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO₂), and volatile organic compounds (VOCs) has been associated with increased risks of asthma, cognitive impairments, and leukemia⁴.
- Elderly individuals are at a heightened risk of developing cardiovascular and neurological disorders as a result of chronic exposure to heavy metals such as mercury and lead¹⁴.

7.3 Limited Access to Health Services

Low-income communities situated near industrial areas often experience significant barriers to adequate healthcare. These challenges include¹⁴:

- The unavailability of nearby medical facilities;
- The high cost of treatment for pollution-induced illnesses such as cancer and chronic respiratory diseases;
- The absence of systematic public health surveillance targeting affected populations.

7.4 Comparative Policy Approaches

In addressing environmental justice, several countries have implemented more progressive and robust frameworks compared to Indonesia¹⁴:

- United States: The Environmental Justice Screening Tool (EJSCREEN) enables the identification of communities with high levels of environmental pollution and prioritizes them for mitigation initiatives.
- European Union: The Zero Pollution Action Plan sets a target to reduce industrial emissions by 55% by 2030 and supports the creation of clean air zones within residential neighborhoods.

• Indonesia: Environmental governance remains weak, with insufficient enforcement of industrial zoning and pollution monitoring, thus exacerbating health risks for local communities.

8. Mitigation Strategies for Industrial Chemical Exposure

To reduce the adverse effects of industrial chemical exposure, a comprehensive strategy encompassing regulatory, community, and technological approaches should be adopted²².

8.1 Strengthening Regulatory Frameworks and Law Enforcement²²

- Implement real-time monitoring systems for air and water pollutants to enhance transparency and responsiveness;
- Enforce stricter penalties for industries that discharge untreated waste;
- Mandate transparent and participatory Environmental Impact Assessments (AMDAL) prior to industrial development.

8.2 Community-Based Approaches²²

- Promote community education programs to raise awareness about the risks of chemical exposure and protective measures, such as wearing masks, using household water filters, and maintaining urban green spaces;
- Develop community-based environmental surveillance networks to detect and report instances of industrial pollution.

8.3 Adoption of Environmentally Friendly Technologies⁸

- Zero Waste Initiatives: Encourage industries to adopt production processes that minimize waste generation;
- Air Filtration Systems: Install air scrubbers to reduce emissions of sulfur dioxide (SO₂) and nitrogen oxides (NOx);
- Integrated Wastewater Treatment: Utilize bioremediation and phytoremediation techniques to neutralize toxic pollutants in water and soil.

Conclusion

The conclusion obtained from the research conducted is that exposure to chemicals from industrial activities can have a significant impact on the health and environment of people living around the industrial area. Studies show that long-term exposure can cause industrial pollutants to enter the human body and cause serious diseases such as respiratory disorders, cancer, and cardiovascular disease. In addition, there are several studies that show that there is an aspect of environmental justice that is still a challenge. Because communities with low socio-economic levels tend to be more vulnerable to pollution due to industry. The impact creates a gap related to the implementation of both policies and access to health services for people who are directly or indirectly affected by exposure to these chemicals. The existence of proper waste processing accompanied by mitigation, increasing awareness related to the law and its application to various industries that are established can help create justice, reduce exposure to chemicals that cause health problems, and reduce the risk of other negative impacts due to industry.

Industrial chemical exposure poses serious health, economic, and environmental risks, disproportionately affecting low-income communities with higher disease burdens, economic stagnation, and limited access to healthcare. It also accelerates climate change through greenhouse gas emissions, leading to global warming and ecological damage. Effective mitigation requires cross-sector collaboration, strict enforcement of environmental regulations, and integration with climate policies. Implementing smart pollution monitoring technologies and empowering communities through education and advocacy can enhance early detection and response. Combining policy reforms, technological innovation, and community engagement is essential to reducing exposure risks and ensuring long-term sustainability.

Acknowledgements

None.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Sources

None.

References

1. Roy R, Zhang Y, Wang J, et al. Pollution accidents caused by industrial chemicals: a global overview. *Environ Int*. 2024;179:108178.

- 2. Rovira J, Nadal M, Schuhmacher M, Domingo JL. Air pollutants around a petrochemical complex: Human health risks. *Sci Total Environ*. 2021;762:143162.
- 3. Purba H, Sembiring S, Sinaga R. The impact of household industry waste on water quality in Ciliwung River. *J Ilmu Lingkungan*. 2018;16(2):65–72.
- Domingo JL, Marquès M, Nadal M, Schuhmacher M. Health risks for the population living near petrochemical industrial complexes. 1. Cancer risks: A review of the scientific literature. *Environ Res.* 2021;197:111051.
- 5. Suwandana E, Wardoyo S, Rahmat A. Climate variability and industrial chemical exposure: Implications for environmental justice. *J Ekol Kesehat*. 2011;10(3):145–52.
- Beronius A, Zilliacus J, Hanberg A, Luijten M, van der Voet H, van Klaveren J. Risk assessment of combined exposures to multiple chemicals: A framework. *Regul Toxicol Pharmacol.* 2020;114:104647.
- 7. Solihat E, Utama W, Fajri S. Dampak industri semen terhadap lingkungan dan keberlanjutan pembangunan. *J Kebijakan Lingk Indones*. 2025;29(1):55–68.
- 8. Sava C, Drăghici C, Popa M, Bălan M. Assessing air pollution control strategies in industrial zones. *Int J Environ Sci Technol*. 2023;20(2):765–77.
- 9. Widodo H. Strategi mitigasi polusi udara di kawasan industri. *J Kesehat Lingk*. 2013;9(1):34–41.
- 10. Poerwati A, Gai J. Dampak penataan ruang dan kebijakan hunian terhadap paparan polusi industri. *J Tata Kota*. 2017;23(1):55–62.
- 11. Sevira R, Andriani M, Maulana R. Perilaku masyarakat terhadap polusi industri di kawasan padat penduduk. *J Sosiologi Pedesaan*. 2021;9(2):88–97.
- 12. Okoye CO, Addey CI, Oderinde O, et al. Toxic chemicals and persistent organic pollutants associated with micro- and nanoplastics pollution. *Sci Total Environ*. 2022;804:150021.
- 13. Pathak P, Bhuvaneswari M, Mishra S. Chemical pollution and community health risk: exposure from industrial activity. *J Environ Public Health*. 2022;2022:4578324.
- Rahmadani N, Syafri M. Hubungan antara paparan bahan kimia berbahaya di lingkungan kerja dan risiko kesehatan pada pekerja industri. *J Mitrasehat*. 2024;14(2):728–32.
- Nursyamsi D, Husnain H. Accumulation of heavy metals in rice grown in soil irrigated with electroplating industry wastewater. J Food Agric Environ. 2015;13(3–4):121–6.

- Budijono, Hasbi M. Heavy metal contamination in Koto Panjang Dam, Indonesia. J Limnologi Indonesia. 2021;2(1):27–35.
- Afifah AS, Septiariva IY, Suhardono S, Suryawan IWK, Sari MM. Evaluation of domestic wastewater and river management in Belian Village, Batam City Sub-district, Indonesia. *Region*. 2023;18(1):295–303.
- 18. Siddiqua A, Hahladakis JN, Al-Attiya WAK. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. *Sci Total Environ*. 2020;730:139088.
- 19. Westenhöfer J, Nouri E, Reschke ML, Seebach F, Buchcik J. Walkability and urban built environments—a systematic review of health impact assessments. *BMC Public Health*. 2023;23:1742.
- Indahsari N, Noor NN, Arsyad DS. Relationship of air pollution exposure in house with occurrence of acute respiratory infections in children under five. *Proc Int Conf Health Serv Manage*. 2018;1:149–53.
- 21. Rina BPN, Darmawan MI, Susanti DR. Analisis tingkat kebisingan lalu lintas pada jalan raya Jenggik–Terara. *J Teknol Lingkungan*. 2024;2(2):22–33.
- 22. Hong J, Kang H, An J, et al. Towards environmental sustainability: insights for managing hazardous pollutants at construction sites. *J Hazard Mater*. 2021;403:123804.
- 23. Liang M, Liu L, Liang W, Mi W, Ye K, Gao J. Intelligentization helps the green and energy-saving transformation of power industry: Evidence from China. *Sci Rep.* 2024;14(1):8698.
- 24. Tanti M, Fadilah A, Suryanto Y. Evaluasi sistem pengendalian pencemaran B3 di kawasan pemukiman: Studi BRIN. *J Ilmu Lingkungan*. 2025;21(2):122–34.
- 25. Muhafid EA. Pengembangan modul IPA berbasis saintifik pada tema polusi udara untuk SMP. [Thesis]. Surakarta: Universitas Sebelas Maret; 2016.
- 26. Anik AH, Toha M, Tareq SM. Occupational chemical safety and management: Case study from Bangladesh. *Hyg Environ Health Adv.* 2024;100110.
- 27. Lukman MF, et al. Dampak polusi udara terhadap kesehatan anak. *J Kesmas*. 2019;13(1):15–21.
- 28. Mahmoud MA, Abdel-Mohsein H, Mahmoud U, et al. Impact of industrial wastewater on aquatic ecosystems. *Environ Pollut*. 2022;307:119473.
- 29. Talema R. Penerapan prinsip kehati-hatian dalam pengelolaan limbah B3 industri. *J Hukum Lingkungan Indonesia*. 2023;11(1):17–29.

- Arjuna AB, Hasibuan S. Fire Risk Analysis in the Chemical Industry using the Hazard Identification and Risk Assessment Method. In: Proc 3rd Asia Pacific Conf Res Ind Syst Eng. 2020:225–9.
- 31. Azzahro F. Penentuan hasil evaluasi pemilihan spesies pohon dalam pengendalian polusi udara pabrik semen. 2020.
- Bedane DT, Asfaw SL. Microalgae and co-culture for polishing pollutants of anaerobically treated agro-processing industry wastewater: the case of slaughterhouse. *Bioresour Bioprocess*. 2023;10(1):81.
- Chen J, Mölter A, Gómez-Barrón JP, O'Connor D, Pilla F. Evaluating pollutant hotspots: insights from Google Air View in Dublin. *Environ Sci Pollut Res*. 2024;31(44):56114–29.
- 34. Cui D, Cox J, Mejias E, et al. Chemical characterization of organic contaminants to estimate children's exposure. *J Expo Sci Environ Epidemiol*. 2023;33(4):589–601.
- 35. Febriyana NA. Identifikasi daya tampung beban pencemaran air Kali Surabaya dengan QUAL2KW [Thesis]. ITS; 2016.
- 36. Febriyanti AL, Pancahayani S, Faisal M. Model matematika penyebaran polusi udara dan jarak aman pemukiman. *SPECTA J Technol*. 2022;6(1):35–46.
- 37. Fiona Azzahro, Yulfiah, Anjarwati. Evaluasi pemilihan spesies pohon untuk pengendalian polusi udara. *J Res Technol*. 2019;5(2). doi:10.55732/jrt.v5i2.201.
- Hariani Y. Pengaruh paparan bahan kimia terhadap kesehatan reproduksi pekerja. Babul Ilmi. 2023;15(1).
- 39. Heris SZ, Ebadiyan H, Mousavi SB, et al. Efficiency of nano filters on pollutant elimination in border stations. *Sci Rep.* 2023;13(1):18793.
- 40. Hutapea O, Kombih MF, Rendrawan R, et al. Program APD untuk mengurangi paparan uap kimia di industri percetakan. *To Maega*. 2022;5(1):1–8.
- 41. Jang H, Choi KH, Cho YM, Han D, Hong YS. Environmental risk score of multiple pollutants for kidney damage among residents in vulnerable areas by occupational chemical exposure in Korea. *Environ Sci Pollut Res*. 2024;31(24):35938–51.
- 42. Jang J, Han E, Heo J, Choi S, Park J, Lee KS, et al. Analysis of the National Air Pollutant Emissions Inventory (2021) in the Republic of Korea. *Asian J Atmos Environ*. 2025;19(1):3.

- 43. Ju T, Lei M, Guo G, Xi J, Zhang Y, Xu Y, Lou Q. A new prediction method of industrial atmospheric pollutant emission intensity based on pollutant emission standard quantification. *Front Environ Sci Eng.* 2023;17(1):8.
- 44. Kamasnuri UN, Widiyanti BL, Darmawan MI. Analisis kualitas mata air Lingkok Pancor untuk peruntukan air bersih di Dusun Jangkar, Desa Setungkep Lingsar. *J Teknol Lingkungan*. 2023;1(1):25–35.
- 45. Lee YW, Kim YP, Yeo MJ. Estimation of air pollutant emissions from heavy industry sector in North Korea. *Aerosol Air Qual Res.* 2023;23(7):230066.
- 46. Li S, Zhu G, Li X, Wan P, Yuan F, Xu S, Hursthouse AS. Ecosystem-inspired model and artificial intelligence predicts pollutant consumption capacity by coagulation in drinking water treatment. *Environ Chem Lett.* 2023;21(5):2499–508.
- 47. Marpaung AP. Pengaruh polusi udara terhadap kesehatan paru-paru pada anak-anak di kawasan industri Kota Medan. *J Ilmiah Simantek*. 2023;7(2):144–6.
- 48. Maulida A, Oktaviani A, Pakpahan HS, Wikaningrum T. Hazardous waste should be managed properly for development of better waste management strategies. J Penelitian dan Karya Ilmiah Lembaga Penelitian Universitas Trisakti. 2022:193–209.
- Ratuannisa T, Ekawati E, Yulia E, Purwasasmita BS, Nugraha AB. Studi pengolahan air limbah batik pada skala industri rumah tangga dan usaha kecil menengah di Cirebon, Indonesia. *Dampak*. 2023;20(1):8–15.
- 50. Ridwan AM, Lestari AD. Gangguan pendengaran akibat paparan toluen. J Penelitian dan Karya Ilmiah Lembaga Penelitian Universitas Trisakti. 2023:144–63.
- 51. Sasmita A, Reza M, Rozi RM. Pemetaan dan perhitungan pemaparan tingkat kebisingan pada industri pengolahan kayu di Kecamatan Siak, Provinsi Riau. *Al-Ard: J Teknik Lingkungan*. 2021;6(2):68–76.
- 52. Sing TF, Wang W, Zhan C. Tracking industry pollution sources and health risks in China. *Sci Rep.* 2023;13(1):22232.
- 53. Stakes K, Willi JM, Chaffer R, Madrzykowski D, Horn GP. Exposure risks and potential control measures for a fire behavior lab training structure: Part A—Fire dynamics and thermal risk. *Fire Technol*. 2023;59(4):2089–125.
- 54. Soinangun B, Novendri I, Matsana J, Gunawan FE, Asrol M, Redi AP. The impact of COVID-19 pandemic on psychological fatigue of control room operators in oil, gas, and petrochemical industry. *Int J Hum Factors Ergonom*. 2021;8(4):393–407.

- 55. Trianisa K, Purnomo EP, Kasiwi AN. Pengaruh industri batubara terhadap polusi udara dalam keseimbangan World Air Quality Index di India. *J Sains Teknol Lingkungan*. 2020;6(2):156–68.
- 56. Utari E, Handayani TA, Nurfitriniha WS. Pemahaman masyarakat tentang pencemaran limbah industri terhadap lingkungan hidup di Kecamatan Ciwandan, Kota Cilegon. *Biodidaktika: J Biologi dan Pembelajarannya*. 2022;17(2).
- Westenhöfer J, Nouri E, Reschke ML, Seebach L, Ziegler P. Contamination of drinking water sources with heavy metals in industrialized areas of Europe. *Environ Sci Pollut Res.* 2023;31(2):2141–51.
- Winda W, Kardhinata H, Nurtjahja K, Fauziah I. Respon fisiologis Pulutan (Urena lobata L.) terhadap polusi udara di lingkungan industri. *J Ilmiah Biologi UMA (JIBIOMA)*. 2024;6(1):46–54.
- 59. Yudita A, Akbar AA, Saziati O. Analisis kualitas air dan pengendalian pencemaran air Sungai Retok, Kabupaten Kubu Raya. *Jukung: J Teknik Lingkungan.* 2023;10(1).